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Abstract
A systematic way of constructing (2 + 1)-dimensional dispersionless integrable
Hamiltonian systems is presented. The method is based on the so-called
central extension procedure and classical R-matrix applied to the Poisson
algebras of formal Laurent series. Results are illustrated with the known
and new (2 + 1)-dimensional dispersionless systems.

PACS numbers: 02.30.Ik, 02.30.Jr, 05.45.−a

1. Introduction

Dispersionless integrable Hamiltonian systems are often considered as a quasi-classical limit
of the related soliton systems (see [1, 2] and the literature quoted there). Nevertheless,
it seems that a more systematic approach, allowing the construction of such systems from
scratch, is necessary. Actually, we are interested in a systematic way of constructing a
class of dispersionless systems having a Hamiltonian structure, and infinite hierarchy of
symmetries and conservation laws. One method of doing this is based on the classical
R-matrix theory. As is well known, the R-matrix formalism proved very fruitful in a systematic
construction of soliton systems (see for example [3–5] and the literature quoted there). So, it
seems reasonable to develop such a formalism for dispersionless systems. Recently, important
progress in that direction was made by Li [6]. In [7], we apply his results to a particular class of
Poisson algebras [8] in order to construct multi-Hamiltonian (1+ 1)-dimensional dispersionless
systems.

Having such an effective theory for constructing multi-Hamiltonian dispersionless
dynamical systems in (1 + 1) dimensions, we were prompted to extend this method to (2 + 1)
dimensions. The central extension was considered in early works by Reyman and Semenov-
Tian-Shansky [9, 10] and also by Prykarpatsky [11, 12]. The central extension approach to
integrable field and lattice-field systems was presented also in [13, 14].
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As our construction leads, in general, to nonlocal equations, we will understand by
dispersionless systems in (2 + 1) dimension PDEs of the form

∂ui

∂t
=

n∑
j=1

vij (u,D)
∂uj

∂x
+

n∑
j=1

wij (u,D)
∂uj

∂y
i = 1, . . . , n (1.1)

where vij and wij are pseudo-differential operators of formal symbols D ≡ ∂−1
x ∂y .

The paper is organized as follows. In section 2, we briefly present a number of basic
facts and definitions of Hamiltonian dynamics on Poisson algebras concerning the formalism
applied. In section 3, we present the general formulation of the central extension procedure on
Poisson algebras. In sections 3 and 4, we apply this and the R-matrix procedure to the Poisson
algebras of formal Laurent series. Then in section 5, we illustrate our results with the known
and new integrable Hamiltonian (2 + 1)-dimensional dispersionless dynamical systems.

2. Hamiltonian dynamics on Poisson algebras: R-structures

Here, we repeat some basic facts presented in part I to make the paper self-consistent. The
reader familiar with part I may skip this section.

Definition 2.1. Let A be a commutative, associative algebra with unit 1. If there is a Lie
bracket on A such that for each element a ∈ A, the operator ada : b �→ [a, b] is a derivation
of the multiplication, then (A, [·, ·]) is called a Poisson algebra.

Thus, the Poisson algebras are Lie algebras with an additional associative algebra structure
(with commutative multiplication and unit 1) related by the derivation property to the Lie
bracket.

Let A be a Poisson algebra, A∗ the dual algebra related to A by the duality map 〈·, ·〉 → R,

A∗ × A → R : (α, a) �→ 〈α, a〉 a ∈ A α ∈ A∗ (2.1)

and D(A∗) := C
∞(A∗) be a space of C

∞-functions on A∗. Let F ∈ D(A∗), then a map
dF : A → A such that

d

dt
F (L + tL′)

∣∣∣∣
t=0

= 〈L′, dF(L)〉 L,L′ ∈ A∗ (2.2)

is a gradient of F.
We confine our further considerations to such Poisson algebras A for which the dual A∗

can be identified with A. So, we assume the existence of a product (·, ·)A on A which is
symmetric, non-degenerate and ad-invariant:

(adab, c)A + (b, adac)A = 0 a, b, c ∈ A. (2.3)

Then, we can identify A∗ with A (A∗ ∼= A) by setting

〈α, b〉 = (a, b)A a, b ∈ A α ∈ A∗ (2.4)

where α ∈ A∗ is identified with a ∈ A.

Definition 2.2. A linear map R : A → A is called a classical R-matrix if the R-bracket

[a, b]R := [Ra, b] + [a,Rb] a, b ∈ A (2.5)

is a second Lie product on A.

Theorem 2.3 [6]. Let A be a Poisson algebra with Lie bracket [·, ·] and non-degenerate
ad-invariant pairing (·, ·)A with respect to which the operation of multiplication is symmetric,
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i.e. (ab, c)A = (a, bc)A, ∀a, b, c ∈ A. Assume R ∈ End(A) is a classical R-matrix, then for
each integer n � −1, the formula

{H,F }n = (L, [R(Ln+1 dF), dH ] + [dF,R(Ln+1 dH)])A (2.6)

where H,F are smooth functions on A, defines a Poisson structure on A. Moreover, all {·, ·}n
are compatible.

The related Poisson bivectors πn are given by the following Poisson maps:

πn : dH �→ −adLR(Ln+1 dH) − Ln+1R∗(adL dH) n � −1 (2.7)

where the adjoint of R is defined by the relation

(a, Rb)A = (R∗a, b)A. (2.8)

Note that the bracket (2.6) with n = −1 is just a Lie–Poisson bracket with respect to a
Lie bracket (2.5)

{H,F }−1 = (L, [dF, dH ]R)A. (2.9)

We will look for a natural set of functions in involution with respect to the Poisson brackets
(2.6). A smooth function F on A is ad-invariant if dF ∈ ker adL, i.e

[dF,L] = 0 L ∈ A (2.10)

which are Casimir functionals of the natural Lie–Poisson bracket.
Hence, the following lemma is valid.

Lemma 2.4 [6]. Smooth functions on A which are ad-invariant commute in {·, ·}n. The
Hamiltonian system generated by a smooth ad-invariant function C(L) and the Poisson
structure {·, ·}n is given by the Lax equation

Lt = [R(Ln+1 dC),L] L ∈ A. (2.11)

For any R-matrix, each two evolution equations in the hierarchy (2.11) commute due to
the involutivity of the Casimir functions Cq . Each equation admits all the Casimir functions as
a set of conserved quantities in involution. In this sense, we will regard (2.11) as a hierarchy
of integrable evolution equations.

Let us assume that an appropriate product on Poisson algebra A is given by the trace form
tr : A → R

(a, b)A = tr(ab) a, b ∈ A. (2.12)

To construct the simplest R-structure let us assume that the Poisson algebra A can be split
into a direct sum of Lie subalgebras A+ and A−, i.e.

A = A+ ⊕ A− [A±, A±] ⊂ A±. (2.13)

Denoting the projections onto these subalgebras by P±, we define the R-matrix as

R = 1
2 (P+ − P−) (2.14)

which is well defined.
The following two lemmas [5, 15] are useful for calculating Hamiltonians H(L) from the

gradients dH(L)

Lemma 2.5 (Poincaré). If M is a linear space, or more generally is of star shape
(∀L∈M{λL : 0 � λ � 1} ⊂ M), each closed k-form is exact.



10348 M Błaszak and B M Szablikowski

Lemma 2.6. Let M fulfil the condition of the Poincaré lemma. Then for an exact 1-form γ (L)

H(L) =
∫ 1

0
〈γ (λL),L〉 dλ (2.15)

is a zero-form such that dH(L) = γ (L).

Following the above scheme, we are able to construct in a systematic way integrable
multi-Hamiltonian dispersionless systems, with infinite hierarchy of involutive constants of
motion and infinite hierarchy of related commuting symmetries, once we fix a Poisson algebra.

3. Central extension approach

Assume now that the Poisson algebra A depends effectively on an independent parameter
y ∈ S

1, which naturally generates the corresponding current operator algebra C(A) =
C∞(S1, A) with the following modified Tr-operation:

Tr(a) :=
∫

S1

tr(a) dy (3.1)

where tr (2.12) operation is defined for the Poisson algebra A. The scalar product reads

(a, b)C(A) := Tr(a · b) (3.2)

for a and b ∈ C(A). The current Poisson algebra C(A) can be naturally extended via the
central extension procedure: C(A) → C(A) = C(A) ⊗ C with the following Lie product:

[(a, α), (b, β)] := ([a, b], ω2(a, b)) (3.3)

where α, β ∈ C and ω2 : C(A) × C(A) → C is the standard Maurer–Cartan two-cocycle on
C(A):

ω2(a, b) :=
∫

S1

(
a,

∂b

∂y

)
A

dy = Tr(a · by) a, b ∈ C(A). (3.4)

Recall that the Maurer–Cartan two-cocycle on a Lie algebra is a bilinear C-valued function
satisfying two conditions:

(i) it is skew-symmetric

ω2(a, b) = −ω2(b, a) (3.5)

(ii) it satisfies the Jacobi identity

ω2([a, b], c) + ω2([c, a], b) + ω2([b, c], a) = 0. (3.6)

Hence, the Lie product (3.3) is well defined on C(A). The scalar product on C(A) is given by

((a, α), (b, β))C(A) := Tr(a · b) + α · β. (3.7)

The Poisson bracket {·, ·} on the functionals D(C(A)) is defined as

{H,F }(L) := ((L, 1), [(dF, 1), (dH, 1)])C(A)

= ((L, 1), ([dF, dH ], ω2(dF, dH)))C(A) (3.8)

for all (L, 1) ∈ C(A∗) ∼= C(A). Then from (3.7) we get the following form:

{H,F }(L) = (L, [dF, dH ])C(A) + ω2(dF, dH) (3.9)

which can be considered as a centrally extended Lie–Poisson bracket.
Let us repeat the R-matrix approach for the current Lie algebra C(A) with a natural

Lie–Poisson bracket (3.9).
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Lemma 3.1. Casimir functionals C ∈ D(C(A)) of a Lie–Poisson bracket (3.9) satisfy the
so-called Novikov–Lax equation

[dC,L] + (dC)y = 0 (3.10)

for all L ∈ C(A∗) ∼= C(A).

Proof. For every H,F ∈ D(C(A)) and L ∈ C(A)

{H,F }(L) = (L, [dF, dH ])C(A) + ω2(dF, dH)

= (dF, [dH,L])C(A) + (dF, (dH)y)C(A)

= (dF, [dH,L] + (dH)y)C(A)

hence for Casimir functionals C ∈ D(C(A))

{C,F }(L) = 0 ⇐⇒ [dC,L] + (dC)y = 0. �

The R-structure R ∈ End(C(A)) is defined as follows:

[(a, α), (b, β)]R := (
[a, b]R, ωR

2 (a, b)
)

(3.11)

where ωR
2 (a, b) := ω2(Ra, b) + ω2(a, Rb). Then, the new linear Lie–Poisson bracket has the

following form:

{H,F }1(L) = ((L, 1), [(dF, 1), (dH, 1)]R)C(A)

= (L, [dF, dH ]R)C(A) + ωR
2 (dF, dH). (3.12)

Lemma 3.2. The following Poisson operator is related to the linear Poisson bracket (3.12):

θ(L) : dH �→ − adLR dH − R∗ adL dH + (R dH)y + R∗(dH)y. (3.13)

Proof. For every H,F ∈ D(C(A)) and L ∈ C(A)

{H,F }1(L) = (L, [dF, dH ]R)C(A) + ωR
2 (dF, dH)

= (R dF, [dH,L])C(A) + (dF, [R dH,L])C(A) + (R dF, (dH)y)C(A)

+ (dF, (R dH)y)C(A)

= (dF,−[L,R dH ] − R∗[L, dH ] + (R dH)y + R∗(dH)y)C(A)

= (dF, θ(L) dH)C(A). �

Theorem 3.3. The Casimir functionals Ci ∈ D(C(A)) of the Poisson bracket (3.8) on
C(A∗) ∼= C(A) are in involution with respect to the linear Poisson bracket (3.12). Moreover,
Casimir functionals Ci satisfy the following hierarchy of evolution equations:

Lti = θ(L) dCi = [R dCi, L] + (R dCi)y i ∈ Z. (3.14)

Proof. Let Ci and Cj ∈ D(C(A)) be Casimir functionals, then

{Ci, Cj }1(L) = (L, [dCj , dCi]R)C(A) + ωR
2 (dCj, dCi)

= (R dCj, [dCi, L] + (dCi)y)C(A) + (R dCi, [L, dCj ] − (dCj)y)C(A) = 0.

The proof of the second part of the theorem is obvious. �

In a special case of Poisson algebras, which are considered in the paper, the bracket (3.12)
is nothing else but a centrally extended Lie–Poisson bracket (2.9). For higher order Poisson
brackets (2.6) we failed to prove the Poisson property (Jacobi identity) after central extension.
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4. Poisson algebras of formal Laurent series

Let A be an algebra of Laurent series with respect to p

A =
{

L =
∑
i∈Z

ui(x)pi

}
(4.1)

where the coefficients ui(x) are smooth functions. It is obviously commutative and associative
algebra under multiplication. The Lie–bracket can be introduced in infinitely many ways as

[L1, L2] = pr

(
∂L1

∂p

∂L2

∂x
− ∂L1

∂x

∂L2

∂p

)
:= {L1, L2}r r ∈ Z (4.2)

as adL = pr
(

∂L
∂p

∂
∂x

− ∂L
∂x

∂
∂p

)
is a derivation of the multiplication, so Ar := (A, {·, ·}r ) are

Poisson algebras. An appropriate symmetric product on Ar is given by a trace form (a, b)A :=
tr(ab):

tr L =
∫

	

resrL dx resrL = ur−1(x) (4.3)

which is ad-invariant. In expression (4.3) the integration denotes the equivalence class of
differential expressions modulo total derivatives. For a given functional F(L) = ∫

	
f (u) dx,

we define its gradient as

dF = δF

δL
=

∑
i

δf

δui

pr−1−i (4.4)

where δf/δui is a variational derivative.
We construct the simplest R-matrix, through a decomposition of A into a direct sum of

Lie subalgebras. For a fixed r let

A�−r+k = P�−r+kA =
{

L =
∑

i�−r+k

ui(x)pi

}
(4.5)

A<−r+k = P<−r+kA =
{

L =
∑

i<−r+k

ui(x)pi

}

where P are appropriate projections. As we presented in [7], A�−r+k, A<−r+k are Lie
subalgebras in the following cases:

1. k = 0, r = 0,
2. k = 1, 2, r ∈ Z,

which one can see through a simple inspection. Then, the R-matrix is given by the projections

R = 1
2 (P�−r+k − P<−r+k) = P�−r+k − 1

2 = 1
2 − P<−r+k. (4.6)

To find R∗ one has to find P ∗
�−r+k and P ∗

<−r+k given by the orthogonality relations

(P ∗
�−r+k, P<−r+k) = (P ∗

<−r+k, P�−r+k) = 0. (4.7)

So, we have

P ∗
�−r+k = P<2r−k P ∗

<−r+k = P�2r−k (4.8)

and then

R∗ = 1
2 (P ∗

�−r+k − P ∗
<−r+k) = 1

2 − P�2r−k = P<2r−k − 1
2 . (4.9)
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5. Centrally extended Poisson algebras of Laurent series

Let A be an algebra of Laurent series with respect to p

A =
{

L =
∑
i∈Z

ui(x, y)pi

}
(5.1)

where the coefficients ui(x, y) are smooth functions of two variables x and y. As in the
(1 + 1)-dimensional case p was a conjugate coordinate related to x, let us now introduce q as
a conjugate coordinate related to y. Then, introducing the extended Lie-bracket (4.2) in the
form

{L1, L2}r := pr

(
∂L1

∂p

∂L2

∂x
− ∂L1

∂x

∂L2

∂p

)
+

∂L1

∂q

∂L2

∂y
− ∂L1

∂y

∂L2

∂q
r ∈ Z (5.2)

and the extended Lax element L ≡ L − q,L ∈ A. The Lax–Novikov equation (3.10) takes
the form

{dC,L}r = 0 (5.3)

and the hierarchy of evolution equations (3.14) for Casimir functionals C(L) with R-matrix
given by (4.6) has the form of two equivalent representations

Lti = {(dCi)�−r+k,L}r = −{(dCi)<−r+k,L}r i ∈ Z (5.4)

which are Lax hierarchies.
To construct dispersionless (2 + 1)-dimensional integrable equations, first we have to solve

equation (5.3), which can be done by putting

dCi =
∑
j�i

ajp
j i � −r + k (5.5)

or by

dCi =
∑
j�i

ajp
j i < −r + k (5.6)

where the function parameters aj are obtained from (5.3) successively via the recurrent
procedure. Note that although the solutions (5.5) or (5.6) are in the form of infinite series,
in fact we need only their finite parts (dCi)�−r+k or (dCi)<−r+k. Hence, for a given L, in
principle, we can construct two different hierarchies of Lax equations (5.4).

We have to explain what type of Lax operator can be used in (5.4) to obtain a consistent
operator evolution equivalent to some nonlinear integrable equation. Obviously, we are
interested in extracting closed systems for a finite number of fields. Hence, we start by
looking for Lax operators L in the general form

L = uNpN + uN−1p
N−1 + · · · + u−m+1p

−m+1 + u−mp−m − q (5.7)

of Nth order, parametrized by finite number of fields ui . To obtain a consistent Lax equation,
the Lax operator (5.7) has to form a proper submanifold of the full Poisson algebra under
consideration, i.e. the left- and right-hand sides of expression (5.4) have to lie inside this
submanifold.

Observing (5.4) with some (dC)<−r+k = a−r+k−1p
−r+k−1 + a−r+k−2p

−r+k−2 + · · ·, one
immediately obtains the highest order of the right-hand side of the Lax equation as

Lt = (uN)tp
N + (uN−1)tp

N−1 + · · ·
= −{(dC)<−r+k, uNpN + lower}r − ∂y(dC)<−r+k

= (−((−r + k − 1)a−r+k−1(uN)x − N(a−r+k−1)xuN)pN+k−2 + lower)

+ (−(a−r+k−1)yp
−r+k−1 + lower) (5.8)
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where lower represents lower orders. Observing (5.4) with some (dC)�−r+k = · · · +
a−r+k+1p

−r+k+1 + a−r+kp
−r+k one immediately obtains the lowest order of the right-hand side

of the Lax equation (5.4) as

Lt = · · · + (u−m+1)tp
−m+1 + (u−m)tp

−m

= {(dC)�−r+k, higher + u−mp−m}r + ∂y(dC)�−r+k

= (higher + ((−r + k)a−r+k(u−m)x − (−m)(a−r+k)xu−m)p−m+k−1)

+ (higher + (a−r+k)yp
−r+k) (5.9)

where higher represents higher orders. Simple consideration of (5.8) and (5.9) with condition
N � −m leads to the admissible Lax polynomials with a finite number of field coordinates,
which form proper submanifolds of Poisson subalgebras. They are given in the following
forms:

k = 0, r = 0:

L = cNpN + cN−1p
N−1 + uN−2p

N−2 + · · · + u0 − q for N � 1 (5.10)

k = 1, r ∈ Z :

L = cNpN + uN−1p
N−1 + · · · + u−mp−m − q for N � 1 − r � −m (5.11)

L = u−rp
−r + u−r−1p

−r−1 + · · · + u−mp−m − q for − r � −m (5.12)

k = 2, r ∈ Z :

L = uNpN + · · · + u1−mp1−m + c−mp−m − q for N � 1 − r � −m (5.13)

L = uNpN + · · · + u3−rp
3−r + u2−rp

2−r − q for N � 2 − r (5.14)

where the ui are dynamical fields and cN , cN−1, c−m are arbitrary time-independent functions
of x and y. Lax operators for k = 0, 1, 2: (5.10), (5.11), (5.13) form a proper submanifold
in (1 + 1) dimension [7], hence the Lax dynamics induced by them can be reduced to the
(1 + 1)-dimensional space. Lax operators for k = 1: (5.12) and k = 2: (5.14) do not form a
proper submanifold in (1 + 1) dimension, hence the Lax dynamics induced by them is purely
a (2 + 1)-dimensional effect, and they cannot be reduced to the (1 + 1)-dimensional space.

Hence, by knowing the restricted Lax operators L we can now investigate the form of
gradients of Casimir functionals dCi given by (5.5) or by (5.6) which satisfy equation (5.3),
also some further simplest admissible reductions of Lax operators can be investigated.

The case of k = 0. Let us consider Lax operators of the form (5.10). Then observing (5.3)
with some dCi = aip

i + ai−1p
i−1 + lower, one immediately obtains the conditions for the

highest terms of dCi , since

{aip
i + ai−1p

i−1 + ai−2p
i−2 + lower,L}0 = −N(ai)xcNpi+N−1

− (NcN(ai)x + (N − 1)cN−1(ai−1)x)p
i+N−2 + lower = 0. (5.15)

Therefore (ai)x = (ai−1)x = 0, iai(uN−2)x − NcN(ai−2)x = 0 and so on, hence (5.5) has the
following form:

dCi = αip
i + αi−1p

i−1 +
iαi

NcN

uN−2p
i−2 + ai−3p

i−3 + lower i � 0 (5.16)
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where αi, αi−1 are arbitrary x-independent functions. Observing (5.3) with dCi = higher +
ai+1p

i+1 + aip
i , one obtains the conditions for the lowest terms of dCi , since

{higher + ai+1p
i+1 + aip

i,L}0

= higher + ((i + 1)ai+1(u0)x + iai(u1)x − (ai)xu1 + (ai)y)p
i + iai(u0)xp

i−1 = 0.

(5.17)

Accordingly ai = 0 and ai−1 = ai−2 = · · · = 0 since aj depends linearly on aj+1, aj+2, . . . , ai .
Hence for k = 0 there is only one Lax hierarchy for the dCi of the form (5.16). There are not
any obvious further reductions of L.

The case of k = 1. For Lax operators of the form (5.11) by observing (5.3), dCi , given by
(5.5) or (5.6), have the following forms:

dCi = αip
i +

iαi

NcN

uN−1p
i−1 + ai−2p

i−2 + lower i � −r + 1 (5.18)

dCi = higher + ai+2p
i+2 + ai+1p

i+1 + αi(u−m)−
i
m pi i < −r + 1 (5.19)

where αi is an arbitrary x-independent function. For Lax operators of the form (5.12) by
observing (5.3), dCi , given by (5.5) or (5.6), have the following forms:

dCi = βip
i − ∂−1

y (iβi(u−r )x + r(βi)xu−r )p
i−1 + ai−2p

i−2 + lower i � −r + 1 (5.20)

dCi = higher + ai+2p
i+2 + ai+1p

i+1 + αi(u−m)−
i
m pi i < −r + 1 (5.21)

where αi and βi are arbitrary x- and y-independent functions, respectively.
We remark that, if −m < 1 − r in L, there is a further admissible reduction of

equations (5.4), given by u−m = 0, since such reduced Lax polynomials are still of the
form (5.11) or (5.12). We have to look for the form of gradients of Casimir functionals
after such a reduction. It is easy to see that by this reduction u−m = 0, the gradients of
Casimir functionals (5.18) and (5.20) preserve the order of the highest terms, and the form.
For the gradients of Casimir functionals (5.19) and (5.21) by this reduction the lowest order
disappears, and as all other terms depend linearly on it, such gradients reduce to zero, except
the one case (dCi)<−r+1 = (L)<−r+1 which produces equation Lti = −Ly . We can continue
the reductions by putting u1−m = 0, if the reduced L are still of the form (5.11) or (5.12)
and so on. Therefore, the reductions are proper, in general, only for the gradients of Casimir
functionals in the forms (5.18) and (5.20).

The case of k = 2. For Lax operators of the form (5.13) by observing (5.3), dCi , given by
(5.5) or (5.6), have the following forms:

dCi = αi(uN)
i
N pi + ai−1p

i−1 + ai−2p
i−2 + lower i � −r + 2 (5.22)

dCi = higher + ai+2p
i+2 − iαi

mc−m

u1−mpi+1 + αip
i i < −r + 2 (5.23)

where αi is an arbitrary x-independent function. For Lax operators of the form (5.14) by
observing (5.3), dCi , given by (5.5) or (5.6), have the following forms:

dCi = αi(uN)
i
N pi + ai−1p

i−1 + ai−2p
i−2 + lower i � −r + 2 (5.24)

dCi = higher − ∂−1
y (iβi(u2−r )x − (2 − r)(βi)xu2−r )p

i+1 + βip
i i < −r + 2 (5.25)

where αi and βi are arbitrary x- and y-independent functions, respectively.
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If N > 1 − r in L, there is a further admissible reduction of equations (5.4), given
by uN = 0 since such reduced Lax polynomials are still of the form (5.13) or (5.14). By
analogous considerations as for k = 1, these reductions are proper, in general, only for the
gradients of Casimir functionals in the forms (5.23) and (5.25).

The different schemes are interrelated as explained in the following theorem.

Theorem 5.1. Under the transformation

x ′ = x y ′ = −y p′ = p−1 q ′ = q t ′ = t (5.26)

the Lax hierarchy defined by k = 1, r and L transforms into the Lax hierarchy defined by
k = 2, r ′ = 2 − r and L′, i.e.

k = 1, r,L ⇐⇒ k = 2, r ′ = 2 − r,L′. (5.27)

Proof. It is readily seen that the Lax operators for k = 1 and r of the forms (5.11) and (5.12)
transform into the well-restricted Lax operators for k = 2 and r ′ = 2 − r of the forms (5.13)
and (5.14), respectively. Let us observe that

{A,B}r = pr

(
∂A

∂p

∂B

∂x
− ∂A

∂x

∂B

∂p

)
+

∂A

∂q

∂B

∂y
− ∂A

∂y

∂B

∂q

= −p′−r+2

(
∂A′

∂p′
∂B ′

∂x ′ − ∂A′

∂x ′
∂B ′

∂p′

)
− ∂A′

∂q ′
∂B ′

∂y ′ +
∂A′

∂y ′
∂B ′

∂q ′ = −{A′, B ′}′r ′

and

(dC)′�s = (dC ′)�−s .

Hence, we have

Lt = {(dC)�−r+1,L}r = −{(dC)′�−r+1,L′}′r ′

= −{(dC ′)�r−1,L′}′r ′

= −{(dC ′)<−r ′+2,L′}′r ′ = L′
t ′ . �

Therefore, some dispersionless systems can be reconstructed from different Poisson algebras.
Moreover, we remark that the gradients of Casimir functionals for k = 1 and k = 2 transform
by p−1 = p′ reciprocally at slant, i.e. (5.18) ↔ (5.23), (5.19) ↔ (5.24) and (5.20) ↔ (5.25),
(5.21) ↔ (5.24).

Two equivalent representations of Poisson structure coming from the linear Poisson tensor
(3.13) with the R-matrix given by (4.6) are

θ(L) dH = {(dH)�−r+k,L}r − ({dH,L}r)�2r−k

= −{(dH)<−r+k,L}r + ({dH,L}r )<2r−k. (5.28)

It turns out that the first representation yields a direct access to the lowest polynomial order
of θ dH , whereas the second representation yields the information about the highest orders
present. There are two options. The best situation is when a given Lax operator forms a proper
submanifold of the full Poisson algebra, i.e. the image of the Poisson operator θ lies in the
space tangent to this submanifold for each element. If this is not the case, the Dirac reduction
can be invoked for the restriction of a given Poisson tensor to a suitable submanifold.
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The case of k = 0. Let us first consider the simplest admissible Lax polynomial (5.10) of
the form

L = pN + uN−2p
N−2 + · · · + u1p + u0 − q. (5.29)

This is the well-known dispersionless Gelfand–Dickey case. Then, the gradient of the
functional H(L) is given in the form

δH

δL = δH

δu0
p−1 +

δH

δu1
p−2 + · · · +

δH

δuN−2
p1−N . (5.30)

By inserting (5.29) into (5.28) it becomes clear from the first representation of the linear tensor
that the lowest order of θ dH is at least zero, from the second representation it is evident that
the highest differential order will be at most N −2. Hence, θ dH is tangent to the submanifold
formed by the Lax operator of the form (5.29). As a result, these Lax operators form a proper
submanifold of full Poisson algebra, and the Poisson tensor, since

(
δH
δL

)
�0

= 0, is given by

θ

(
δH

δL

)
=

({
L,

δH

δL

}
0

)
�0

. (5.31)

The case of k = 1. Let us first consider the simplest admissible Lax operator (5.11) in
the form

L = pN + uN−1p
N−1 + · · · + u1−mp1−m + u−mp−m − q. (5.32)

Then the gradient of the functional H(L) is given in the form
δH

δL = δH

δu−m

pr+m−1 +
δH

δu−m+1
pr+m−2 + · · · +

δH

δuN−1
pr−N . (5.33)

Inserting (5.32) into (5.28) one immediately obtains the highest and lowest order of θ dH as

θ dH = ((· · ·)pN−1 + lower) + ((· · ·)p2r−2 + lower)

= (higher + (· · ·)p−m) + (higher + (· · ·)p2r−1) (5.34)

where lower (higher) represents lower (higher) orders. Hence, Lax operators of the form
(5.32) form a proper submanifold for N � 2r − 1 � −m, as then θ dH is tangent to this
submanifold. So the linear Poisson map is

θ

(
δH

δL

)
=

{(
δH

δL

)
�−r+1

,L
}

r

+

({
L,

δH

δL

}
r

)
�2r−1

. (5.35)

Otherwise a Dirac reduction is required.
Analogously, for Lax operators (5.12) in the form

L = u−rp
−r + u−r−1p

−r−1 + · · · + u1−mp1−m + u−mp−m − q (5.36)

we have

θ dH = ((· · ·)p−r + lower) + ((· · ·)p2r−2 + lower)

= (higher + (· · ·)p−m) + (higher + (· · ·)p2r−1). (5.37)

Hence, this operator forms a proper submanifold for r � 0 and 2r − 1 � −m. The Poisson
tensor is given by (5.35). In other cases a Dirac reduction is required. The simplest case is
r = 1 with one-field reduction. Let

L = u + L = u + u−1p
−1 + u−2p

−2 + · · · + u1−mp1−m + u−mp−m − q. (5.38)

The Dirac reduction with the constraint u = 0 leads to the Poisson map in the form

θ red

(
δH

δL

)
=

({
δH

δL ,L
}

1

)
<1

+

{
∂−1
y res1

{
L,

δH

δL

}
1

,L
}

1

(5.39)

which is generally nonlocal.
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The case of k = 2. Let us consider Lax polynomials (5.13) in the form

L = uNpN + uN−1p
N−1 + · · · + u1−mp1−m + p−m − q. (5.40)

Then the gradient of the functional H(L) is given in the form

δH

δL = δH

δu1−m

pr+m−2 + · · · +
δH

δuN−1
pr−N +

δH

δuN

pr−N−1. (5.41)

Then by analogous considerations for k = 1 or by theorem 5.1, L given by (5.40) forms a
proper submanifold for N � 2r − 3 � −m. The Poisson tensor has the form

θ

(
δH

δL

)
=

{(
δH

δL

)
�−r+2

,L
}

r

+

({
L,

δH

δL

}
r

)
�2r−2

. (5.42)

Otherwise a Dirac reduction is required.
Analogously, Lax operators (5.14) in the form

L = uNpN + uN−1p
N−1 + · · · + u3−rp

3−r + u2−rp
2−r − q (5.43)

form a proper submanifold for r � 2 and N � 2r − 3. Then, the Poisson tensor has the form
(5.42). Otherwise a Dirac reduction is required. The simplest case is for r = 1 with one-field
reduction. Let

L = L + u = uNpN + uN−1p
N−1 + · · · + u2p

2 + u1p + u − q. (5.44)

The Dirac reduction with the constraint u = 0 leads to the Poisson map in the form

θ red

(
δH

δL

)
=

({
L,

δH

δL

}
1

)
�0

−
{
∂−1
y res1

{
L,

δH

δL

}
1

,L
}

1

(5.45)

which is generally nonlocal.
Hence, we know the Poisson structure for (2 + 1) dispersionless systems constructed

from Poisson algebras, and since we are interested in Hamiltonian systems, we shall now
consider the problem of their construction. The conserved quantities Hi are described by the
Hamiltonian equations

Lti = θ dHi(L). (5.46)

First we have to find cosymmetries (1-forms) dHi which are gradients of Hamiltonians.
Because we are using the gradients of Casimir functionals dCi to generate equations (5.4),
our dHi are given by projections of dCi on subspaces spanned by dHi in the forms (5.30),
(5.33) and (5.41) for k = 0, 1 and 2, respectively. Then, we can apply lemma 2.6 and hence
Hamiltonians are defined as follows:

Hi(L) =
∫ 1

0
Tr(dHi(λL)L) dλ =

∫∫
	×S1

∫ 1

0
resr (dHi(λL)L) dλ dx dy. (5.47)

For Lax operator L = ∑n
i=1 uip

i − q the gradients from (5.47) are given by

dHi(λL) =
n∑

i=1

δh

δ(λui)
(λu1, λu2, . . . , λun)p

r−1−i . (5.48)

Hence, by using the definition of the residuum (4.4) we get that

resr (dHi(λL)L) =
n∑

i=1

ui

δh

δ(λui)
(λu1, λu2, . . . , λun). (5.49)

Contrary to the (1 + 1)-dimensional case, in the (2 + 1) case the functional densities contain
terms with x, y derivatives as well as nonlocal terms. Nevertheless, all these additional terms
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appear in a special form, namely they are expressed through the pseudo-differential operators
of the form Dk,D−k where

D := ∂−1
x ∂y D−1 := ∂−1

y ∂x. (5.50)

Thus, in addition to (5.47) a useful relation for the calculation of variations containing D,
derived from (2.2), is the following:

δ

δu

∫∫
	×S1

f (u)Dkg(u) dx dy = ∂f (u)

∂u
Dkg(u) +

∂g(u)

∂u
Dkf (u). (5.51)

6. A list of some (2 + 1)-dimensional dispersionless systems

In this section, we will display a list of the simplest nonlinear dispersionless (2+ 1)-dimensional
integrable systems. Calculating the gradients dCn (n-highest order) given by (5.5) we consider
the Lax hierarchy

Ltn = {(dCn)�−r+k,L}r n ∈ Z. (6.1)

The second hierarchy for dCn given by (5.6) can be obtained by the transformation from
theorem 5.1, which we leave for the interested reader. We present the Hamiltonian structure
for particular choices of r. For k = 0 and k = 1 the choice n = 1 − r will always lead to the
dynamics (ui)t1−r

= (1 − r)(ui)x for the fields ui in L, so that we may identify t1−r = 1
1−r

x in
this case. For (dCn)�−r+k = L the equations become trivial, and then Ltn+r−k

= Ly . For each
choice of k = 0, 1 or 2 and N we will exhibit the first nontrivial of the nonlinear Lax
equations (6.1) associated with a chosen operator L.

The case of k = 0.

Example 6.1 (The dispersionless Kadomtsev–Petviashvili: k = 0, r = 0, N = 2.). The
dispersionless Kadomtsev–Petviashvili (dKP) equation is a (2 + 1)-dimensional extension of
the dispersionless KdV equation. The Lax operator for the (2 + 1)-dimensional dKP hierarchy
has the form

L = p2 + u − q. (6.2)

Then we derive for (dC3)�0 = p3 + 3
2up + 3

4Du

ut3 = 3
2uux + 3

4Duy = θ dH (6.3)

where we get the Poisson tensor and the Hamiltonian

θ = 2∂x H = 1

8

∫∫
	×S1

(
u3 +

3

2
uD2u

)
dx dy. (6.4)

Example 6.2 (The (2 + 1) Boussinesq hierarchy: k = 0, r = 0, N = 3.). The Lax operator is
given by

L = p3 + up + v − q. (6.5)

We derive for (dC2)�0 = p2 + 2
3u(

u

v

)
t2

=
(

2vx

− 2
3uux + 2

3uy

)
= θ dH. (6.6)

Eliminating the field v from this equation we can derive the (2+ 1)-dimensional ‘dispersionless’
Boussinesq equation

utt = 4
3uxy − 2

3 (u2)xx . (6.7)
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The respective Poisson tensor and Hamiltonian are given in the following form:

θ =
(

0 3∂x

3∂x 0

)
H = 1

3

∫∫
	×S1

(
−1

9
u3 + v2 +

1

3
uDu

)
dx dy. (6.8)

Example 6.3 (The case: k = 0, r = 0, N = 4.). The Lax operator is

L = p4 + up2 + vp + w − q (6.9)

then for (dC2)�0 = p2 + 1
2u we have

u

v

w




t2

=

 2vx

2wx − uux

1
2uy − 1

2uxv


 = θ dH (6.10)

where

θ =

 0 0 4∂x

0 4∂x 0
4∂x 0 ∂xu + u∂x


 (6.11)

H = 1

4

∫∫
	×S1

(
−1

2
u2v + 2vw +

1

4
uDu

)
dx dy. (6.12)

The case of k = 1.

Example 6.4 (Three-field hierarchy: k = 1, r ∈ Z\2.). The Lax operator has the form (5.11)
with N = 2 − r,m = r + 1

L = p2−r + up1−r + vp−r + wp−r−1 − q. (6.13)

Then for (dC2−r )�−r+1 = p2−r + up1−r we have
u

v

w




t2−r

=

 uy + (2 − r)vx

ruxv + (1 − r)uvx + (2 − r)wx

(1 + r)uxw + (1 − r)uwx


 . (6.14)

This Lax operator forms a proper submanifold as regards the condition N � 2r − 1 � −m

only for r = 0, 1, otherwise a Dirac reduction is required. Then for r = 0
u

v

w




t2

=

 uy + 2vx

uvx + 2wx

uxw + uwx


 = θ dH (6.15)

where

θ =

 0 0 2∂x

0 2∂x u∂x − ∂y

2∂x ∂xu − ∂y 0


 (6.16)

H = 1

16

∫∫
	×S1

(
16vw − 2u2Dv + 8uDw +

1

4
u2Du2 + 4vDv

− uD2u2 + 4uD2v + uD3u

)
dx dy. (6.17)
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For r = 1 we have
u

v

w




t1

=

 uy + vx

uxv + wx

2uxw


 = θ dH (6.18)

where

θ =

 ∂y ∂xv 2∂xw

v∂x ∂xw + w∂x 0
2w∂x 0 0


 H = 1

2

∫∫
	×S1

(u2 + 2v) dx dy. (6.19)

Example 6.5 (Dispersionless (2 + 1) Toda: k = 1, r ∈ Z\{2}.). The first admissible reduction
w = 0 of (6.13) leads to the two-field Lax operator

L = p2−r + up1−r + vp−r − q. (6.20)

This Lax operator forms a proper submanifold only for r = 1, otherwise a Dirac reduction
is required. Hence, for r = 1 by reduction w = 0 (6.18) we get the (2 + 1)-dimensional
dispersionless Toda equation(

u

v

)
t1

=
(

uy + vx

uxv

)
= θ dH (6.21)

where

θ =
(

∂y ∂xv

v∂x 0

)
H = 1

2

∫∫
	×S1

(u2 + 2v) dx dy (6.22)

known up to now in a few non-Hamiltonian representations [1, 2, 17]. Changing the
independent coordinate t ′ = t − y and eliminating the u-field one gets

(ln v)tt ′ = vxx or φtt ′ = (eφx )x (6.23)

where φx = ln v. For r = 0 we have(
u

v

)
t2

=
(

uy + 2vx

uvx

)
(6.24)

but we lose the Hamiltonian structure since the Poisson tensor (6.16) is not reducible with the
constraint w = 0. Hence, the Lax operator (6.20) for r = 0 generates equations which are
non-Hamiltonian.

The next admissible reduction w = v = 0 of (6.14) leads to trivial equation Lt2−r
= Ly

since (dC2−r )�−r+1 = L.

Example 6.6 (One-field hierarchy: k = 1, r ∈ Z\{2}.). The Lax operator is given in the form

L = p2−r + (2 − r)up1−r − q. (6.25)

Then one finds for (dC3−r )�−r+1 = p3−r +(3−r)up2−r +
(

3−r
2−r

Du + 1
2 (3 − r)u2

)
p1−r a whole

family of (2 + 1)-dimensional dispersionless one-field systems

ut3−r
= −1

2
(3 − r)(1 − r)u2ux +

r(3 − r)

2 − r
uuy +

3 − r

(2 − r)2
Duy +

(3 − r)(1 − r)

2 − r
uxDu

(6.26)

derived for the first time in [16], including the modified dKP as a special case of r = 0. This
Lax operator forms a proper submanifold only for r = 1, in other cases a Dirac reduction is
required. For r = 1 we get

ut2 = 2uuy + 2Duy = θ dH (6.27)
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where

θ = ∂y H =
∫∫

	×S1

(
1

3
u3 + uDu

)
dx dy. (6.28)

For r = 0 we get

ut3 = − 3
2u2ux + 3

4Duy + 3
2uxDu (6.29)

and by Dirac reduction of (6.16) with the constraint w = v = 0 we get the formal Poisson
tensor

θ red = 8∂x(∂y − 2u∂x)
−1∂x(∂y − 2∂xu)−1∂x (6.30)

and the related symplectic tensor

J = (θ red)−1 = 1
8 (D − 2u)∂−1

x (D − 2u) (6.31)

such that Jut3 = dH , where

H = 3

32

∫∫
	×S1

(
−1

3
u6 + uDu4 +

1

2
u2D2u2 − u2(Du)2

+
1

3
(Du)3 − uD3u2 +

1

2
uD4u

)
dx dy. (6.32)

Example 6.7 (Three-field hierarchy: k = 1, r ∈ Z.). This case does not exist in (1 + 1)
dimension. The Lax operator has the form (5.12) with m = r + 2

L = up−r + vp−r−1 + wp−r−2 − q. (6.33)

Then for (dC2−r )�−r+1 = p2−r + (r − 2)D−1up1−r we have
u

v

w




t2−r

= (r − 2)


 ruD−1ux + (1 − r)uxD−1u − vx

(1 + r)vD−1ux + (1 − r)vxD−1u − wx

(2 + r)wD−1ux + (1 − r)wxD−1u


 . (6.34)

This Lax operator forms a proper submanifold as regards the condition 2r − 1 � −m only for
r = 0, otherwise a Dirac reduction is required. Then for r = 0

u

v

w




t2

= −2


 uxD−1u − vx

vD−1ux + vxD−1u − wx

2wD−1ux + wxD−1u


 = θ dH (6.35)

where

θ =

 0 −∂y 0

−∂y 0 0
0 0 ∂xw + w∂x


 (6.36)

and

H =
∫∫

	×S1

(−2uD−1w − vD−1v + v(D−1u)2) dx dy. (6.37)

For r = 1 we have
u

v

w




t1

= −

 uD−1ux − vx

2vD−1ux − wx

3wD−1ux


 = θ dH. (6.38)
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We derive the Poisson tensor from (5.39), then

θ red =

 −uD−1∂xu + ∂xv + v∂x −2uD−1∂xv + 2∂xw + w∂x −3uD−1∂xw

−2vD−1∂xu + ∂xw + 2w∂x −4vD−1∂xv −6vD−1∂xw

−3wD−1∂xu −6wD−1∂xv −9wD−1∂xw




(6.39)

and

H =
∫∫

	×S1
u dx dy. (6.40)

Example 6.8 (Two-field hierarchy: k = 1, r ∈ Z.). The first admissible reduction w = 0 of
(6.33) leads to the two-field Lax operator

L = up−r + vp−r−1 − q. (6.41)

This Lax operator forms a proper submanifold only for r = 0, otherwise a Dirac reduction is
required. Hence, for r = 0 by reduction w = 0 of (6.35) we get(

u

v

)
t2

= −2

(
uxD−1u − vx

vD−1ux + vxD−1u

)
= θ dH (6.42)

where

θ =
(

0 −∂y

−∂y 0

)
(6.43)

H = 2

3

∫∫
	×S1

(−vD−1v + v(D−1u)2) dx dy. (6.44)

For r = 1 we have(
u

v

)
t1

= −
(
uD−1ux − vx

2vD−1ux

)
= θ dH. (6.45)

We derive the Poisson tensor from (6.39) with the constraint w = 0, then

θ red =
(−uD−1∂xu + ∂xv + v∂x −2uD−1∂xv

−2vD−1∂xu −4vD−1∂xv

)
(6.46)

and

H =
∫∫

	×S1
u dx dy. (6.47)

Example 6.9 (One-field hierarchy: k = 1, r ∈ Z.). The second admissible reduction
w = v = 0 of (6.33) leads to the one-field Lax operator

L = up−r − q. (6.48)

This Lax operator does not form a proper submanifold as the condition 2r − 1 � −m is
violated, hence a Dirac reduction is required. For r = 0 by reduction v = w = 0 of (6.35)
we get

ut2 = −2uxD−1u (6.49)

but we lose the Hamiltonian structure as the Poisson tensor (6.43) is not Dirac reducible with
constraint v = w = 0. For r = 1 we have

ut1 = −uD−1ux = θ dH. (6.50)

We derive the Poisson tensor from (6.46) with the constraint w = 0, then

θ red = −uD−1∂xu (6.51)

and

H =
∫∫

	×S1

u dx dy. (6.52)
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The case of k = 2.

Example 6.10 (One-field hierarchy: k = 2, r ∈ Z\{2}.). The simplest admissible Lax
operator is given by

L = u2−rp2−r − q. (6.53)

This case does not exist in (1 + 1) dimension. In this case we have to consider separately
two cases: r �= 1 and r = 1. Then, one finds again a whole family of (2 + 1)-dimensional
dispersionless one-field systems [16] including a dispersionless (2 + 1)-dimensional Harry
Dym equation as a special case of r = 0:

r �= 1:

For

(dC3−r )�−r+2 = u3−rp3−r +
3 − r

(r − 1)(2 − r)
u2−rDur−1p2−r

one finds

ut3−r
= 3 − r

(r − 1)(2 − r)
uyDur−1 +

3 − r

(2 − r)2
uDur−2uy. (6.54)

r = 1:

For

(dC2)�1 = u2p2 + 2uD(ln u)p

one finds

ut2 = 2uyD ln u + 2uD(ln u)y. (6.55)

To get θ , we have to make a Dirac reduction as the conditions r � 2, N � 2r − 3 are violated.
The Poisson tensor for r = 1 is given by (5.45), then we get for (6.55) the Hamiltonian
structure, where

θ red = uD−1∂xu H =
∫∫

	×S1

(
ln uD3 ln u +

1

3
(D ln u)3

)
dx dy. (6.56)

Example 6.11 (Two-field hierarchy: k = 2, r ∈ Z\{3}.). The Lax operator is given by

L = up3−r + vp2−r − q. (6.57)

This case is nonreducible to (1 + 1) dimension. Then, one finds for (dC2−r )�−r+2 = u
2−r
3−r p2−r(

u

v

)
t2−r

= 2 − r

3 − r
u

−1
3−r

(
(3 − r)uvx − (2 − r)uxv

uy

)
. (6.58)

To get θ we have to make a Dirac reduction as the conditions r � 2, N � 2r − 3 are violated.
The Poisson tensor for r = 1 is given by (5.45), then(

u

v

)
t1

=
√

u

2u

(
2uvx − uxv

uy

)
= θ red dH (6.59)

where

θ red dH =
(

4uD−1∂xu 2uD−1∂xv

2vD−1∂xu 2vD−1∂xv + ∂xu + u∂x

)
(6.60)
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and

H =
∫∫

	×S1

(
−1

8

v3√u

u2
− 1

3
uDv

√
u

u
+

3

4

v
√

u

u
D ln u

)
dx dy. (6.61)

Example 6.12 (Two-field hierarchy: k = 2, r ∈ Z\{2}.). The Lax operator is given by

L = u2−rp2−r + vp1−r + p−r − q. (6.62)

Then, for (dC2−r )�−r+2 = u2−rp2−r one finds(
u

v

)
t2−r

=
(

uy − (1 − r)uxv + uvx

(2 − r)ru1−rux

)
. (6.63)

This Lax operator forms a proper submanifold only for r = 1, otherwise a Dirac reduction is
required. Hence, for r = 1 we get(

u

v

)
t1

=
(

uy + uvx

ux

)
= θ dH (6.64)

where

θ dH =
(

0 u∂x

∂xu −∂y

)
(6.65)

and

H =
∫∫

	×S1

(
u +

1

2
v2 + vD ln u +

1

2
ln uD2 ln u

)
dx dy. (6.66)

Example 6.13 (Three-field hierarchy: k = 2, r ∈ Z.). The Lax operator is given by

L = up2−r + vp1−r + wp−r + p−r−1 − q. (6.67)

Then for (dC2−r )�−r+2 = up2−r one finds
u

v

w




t2−r

=

uy − (1 − r)uxv + (2 − r)uvx

ruxw + (2 − r)uwx

(1 + r)ux


 . (6.68)

This Lax operator forms a proper submanifold only for r = 1, otherwise a Dirac reduction is
required. Hence, for r = 1 we get

u

v

w




t1

=

 uy + uvx

uxw + uwx

2ux


 = θ dH (6.69)

where

θ =

 0 u∂x 0

∂xu −∂y 0
0 0 2∂x


 (6.70)

and

H =
∫∫

	×S1

(
1

2
v2 + uw + vD ln u +

1

2
ln uD2 ln u

)
dx dy. (6.71)
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